Special complex numbers

In cartesian form, a complex number can be expressed as z=x+yi.z=x+y\mathrm{i}. If yy is zero, then we call the number real. Meanwhile, if xx is zero, we call the number purely imaginary.

Cartesian form

Re{\mathrm{Re}}
Im{\mathrm{Im}}
Condition Cartesian form,
x+yi{x+yi}
Real πŸ”΅πŸŸ’ y=0{y=0}
Real and positive πŸ”΅ y=0,x>0y=0, \allowbreak x > 0
Real and negative 🟒 y=0,x<0y=0, \allowbreak x < 0
Purely imaginary πŸ”΄ x=0{x = 0}

Example

z2zβˆ—=(3+bi)23βˆ’bi=(3+bi)23βˆ’biβ‹…3+bi3+bi=3(9βˆ’b2)βˆ’6b2+(18b+(9βˆ’b2)b)i9+b2=27βˆ’9b2+b(27βˆ’b2)i9+b2\begin{aligned} \frac{z^2}{z^*} &= \frac{(3+b\mathrm{i})^2}{3-b\mathrm{i}} \\ &= \frac{(3+b\mathrm{i})^2}{3-b\mathrm{i}} \cdot \frac{3+b\mathrm{i}}{3+b\mathrm{i}} \\ &= \frac{3(9-b^2)-6b^2+(18b+(9-b^2)b)\mathrm{i}}{9+b^2} \\ &= \frac{27-9b^2+b(27-b^2)\mathrm{i}}{9+b^2} \end{aligned}

Polar form

In polar form, multiple answers/arguments could be possible due to β€œextra rounds” bringing us out of the principal range. To account for this, we have an additional kΟ€k\pi or 2kΟ€2k\pi, where kk is an integer, to account for extra half-rounds or complete rounds.

Re{\mathrm{Re}}
Im{\mathrm{Im}}
Condition Polar form,
reiΞΈ{re^{i\theta}}
Real πŸ”΅πŸŸ’ ΞΈ=kΟ€{{\theta = k \pi}}
Real and positive πŸ”΅ ΞΈ=2kΟ€{{\theta = 2k \pi}}
Real and negative 🟒 ΞΈ=Ο€+2kΟ€{{\theta = \pi + 2k \pi}}
Purely imaginary πŸ”΄ ΞΈ=Ο€2+kΟ€{\theta = \frac{\pi}{2} + k \pi}
k∈Z{k \in \mathbb{Z}}

Example

βˆ’nΟ€12=Ο€2+kΟ€whereΒ k∈Zn=βˆ’6βˆ’12k\begin{gather*} -\frac{n\pi}{12} = \frac{\pi}{2} + k\pi \\ \textrm{where } k \in \mathbb{Z} \\ n = -6 - 12k \end{gather*}
Next: The half angle trick >>