Polar form arithmetic

Complex numbers in polar form, especially when expressed in exponential form reiθ,{r\mathrm{e}^{\mathrm{i}\theta},} lends itself especially well to multiplication, division and conjugation.

(r1eiθ1)(r2eiθ2)=(r1r2)ei(θ1+θ2)z1z2=z1z2arg(z1z2)=arg(z1)+arg(z2)\begin{aligned} (r_1\mathrm{e}^{\mathrm{i}\theta_1}) \cdot (r_2\mathrm{e}^{\mathrm{i}\theta_2}) &= (r_1r_2)\mathrm{e}^{\mathrm{i}(\theta_1 + \theta_2)} \\ \left| z_1 z_2 \right| &= \left| z_1 \right| \left| z_2 \right| \\ \arg(z_1 z_2) &= \arg(z_1) + \arg(z_2) \end{aligned}
r1eiθ1r2eiθ2=r1r2ei(θ1θ2)z1z2=z1z2arg(z1z2)=arg(z1)arg(z2){\begin{aligned} \frac{r_1\mathrm{e}^{\mathrm{i}\theta_1}}{r_2\mathrm{e}^{\mathrm{i}\theta_2}} &= \frac{r_1}{r_2}\mathrm{e}^{\mathrm{i}(\theta_1 - \theta_2)} \\ \left| \frac{z_1}{z_2} \right| &= \frac{\left| z_1 \right|}{\left| z_2 \right|} \\ \arg\left(\frac{z_1}{z_2}\right) &= \arg\left(z_1\right) - \arg\left(z_2\right) \end{aligned}}
(reiθ)=reiθz=zarg(z)=arg(z)\begin{aligned} (r\mathrm{e}^{\mathrm{i}\theta})^* &= r\mathrm{e}^{-\mathrm{i}\theta} \\ \left| z^* \right| &= \left| z \right| \\ \arg(z^*) &= -\arg(z) \end{aligned}

Principal argument

The problem with angles are that there are more than one way to express the same angle (by going multiple rounds). For example, the angles 14π\frac{1}{4}\pi represents the same angle as 94π\frac{9}{4}\pi and 34π-\frac{3}{4}\pi.

We resolve this issue by defining the principal argument of a complex number to be between π-\pi and π\pi.

Principal argument: π<θπ.{-\pi < \theta \leq \pi.}

If any of our arguments are outside of this range, we can add or subtract 2kπ2k\pi from it to bring it back.

Examples

(2e23πi)(3e56πi)z=(23)ei(23π+56π)z=6e32πi \begin{aligned} & \left(2 \mathrm{e}^{ \frac{2}{3} \pi \mathrm{i} }\right) \cdot \left(3 \mathrm{e}^{ \frac{5}{6} \pi \mathrm{i} }\right) \\ \phantom{z} &= \left(2\cdot3\right) \mathrm{e}^{\mathrm{i}\left( \frac{2}{3} \pi + \frac{5}{6} \pi \right)} \\ \phantom{z} &= 6\mathrm{e}^{\frac{3}{2} \pi\mathrm{i}} \end{aligned}
Next: Real/purely imaginary >>