The polar form greatly simplifies the process of complex multiplication and division as compared to
the cartesian form. However, addition and subtraction is a lot more complicated.
For special cases, the following “half angle trick” can be useful, and relies on the conjugate property of
complex numbers.
z + z ∗ = 2 Re ( z ) = 2 r cos  θ z + z^* = 2\textrm{Re}(z) = 2 r \cos \theta z + z ∗ = 2 Re ( z ) = 2 r cos θ  
z − z ∗ = 2 Im ( z ) i = 2 i r sin  θ z - z^* = 2\textrm{Im}(z)\mathrm{i} = 2 \mathrm{i} r \sin \theta z − z ∗ = 2 Im ( z ) i = 2 i r sin θ 
 
Examples 
Simplify e i θ + 1. {\mathrm{e}^{\mathrm{i}\theta} + 1.} e i θ + 1.  
	 
		Step 1: 
			 
			Let e i θ = e i θ 2 e i θ 2 {\mathrm{e}^{\mathrm{i}\theta} = \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\mathrm{e}^{\mathrm{i}\frac{\theta}{2}}} e i θ = e i 2 θ  e i 2 θ   
	and 1 = e i θ 2 e − i θ 2 {1 = \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\mathrm{e}^{-\mathrm{i}\frac{\theta}{2}}} 1 = e i 2 θ  e − i 2 θ    
		 
	e i θ + 1 = e i θ 2 e i θ 2 + e i θ 2 e − i θ 2 = e i θ 2 ( e i θ 2 + e − i θ 2 ) \begin{aligned}
		& \mathrm{e}^{\mathrm{i}\theta} + 1  \\
			&= \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\mathrm{e}^{\mathrm{i}\frac{\theta}{2}} + 
				\mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\mathrm{e}^{-\mathrm{i}\frac{\theta}{2}} \\
			&= \mathrm{e}^{\mathrm{i}\frac{\theta}{2}} 
				\left(\mathrm{e}^{\mathrm{i}\frac{\theta}{2}} + \mathrm{e}^{-\mathrm{i}\frac{\theta}{2}}\right) \\
	\end{aligned}  e i θ + 1 = e i 2 θ  e i 2 θ  + e i 2 θ  e − i 2 θ  = e i 2 θ  ( e i 2 θ  + e − i 2 θ  )   
				 
 
Simplify e i 2 θ − 1. {\mathrm{e}^{\mathrm{i}2\theta} - 1.} e i 2 θ − 1.  
	 
		Step 1: 
			 
			Let e i 2 θ = e i θ e i θ {\mathrm{e}^{\mathrm{i}2\theta} = \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{\mathrm{i}\theta}} e i 2 θ = e i θ e i θ  
	and 1 = e i θ e − i θ {1 = \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{-\mathrm{i}\theta}} 1 = e i θ e − i θ   
		 
	e i 2 θ − 1 = e i θ e i θ − e i θ e − i θ = e i θ ( e i θ − e − i θ ) \begin{aligned}
		& \mathrm{e}^{\mathrm{i}2\theta} - 1  \\
			&= \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{-\mathrm{i}\theta} \\
			&= \mathrm{e}^{\mathrm{i}\theta}
				\left(\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{-\mathrm{i}\theta}\right)
	\end{aligned}  e i 2 θ − 1 = e i θ e i θ − e i θ e − i θ = e i θ ( e i θ − e − i θ )