The polar form greatly simplifies the process of complex multiplication and division as compared to the cartesian form. However, addition and subtraction is a lot more complicated.

For special cases, the following “half angle trick” can be useful, and relies on the conjugate property of complex numbers.

z+z=2Re(z)=2rcosθz + z^* = 2\textrm{Re}(z) = 2 r \cos \theta
zz=2Im(z)i=2irsinθz - z^* = 2\textrm{Im}(z)\mathrm{i} = 2 \mathrm{i} r \sin \theta

Examples

eiθ+1=eiθ2eiθ2+eiθ2eiθ2=eiθ2(eiθ2+eiθ2)\begin{aligned} & \mathrm{e}^{\mathrm{i}\theta} + 1 \\ &= \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\mathrm{e}^{\mathrm{i}\frac{\theta}{2}} + \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\mathrm{e}^{-\mathrm{i}\frac{\theta}{2}} \\ &= \mathrm{e}^{\mathrm{i}\frac{\theta}{2}} \left(\mathrm{e}^{\mathrm{i}\frac{\theta}{2}} + \mathrm{e}^{-\mathrm{i}\frac{\theta}{2}}\right) \\ \end{aligned}
ei2θ1=eiθeiθeiθeiθ=eiθ(eiθeiθ)\begin{aligned} & \mathrm{e}^{\mathrm{i}2\theta} - 1 \\ &= \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{-\mathrm{i}\theta} \\ &= \mathrm{e}^{\mathrm{i}\theta} \left(\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{-\mathrm{i}\theta}\right) \end{aligned}
End of chapter ◼