Finding complex modulus

z=r=x2+y2{|z| = r =\sqrt{x^2+y^2}}

Finding complex argument

Let argz=θ\arg{z} = \theta.
tanθ=yx{\tan \theta = \frac{y}{x}}
Let α=tan1yx{\alpha = \tan^{-1} \left| \frac{y}{x} \right|}

θ={αif x>0,y>0παif x<0,y>0(πα)if x<0,y<0αif x>0,y<0\theta = \begin{cases} \alpha & \text{if } x > 0, y > 0 \\ \pi - \alpha & \text{if } x < 0, y > 0 \\ -(\pi - \alpha) & \text{if } x < 0, y < 0 \\ -\alpha & \text{if } x > 0, y < 0 \end{cases}

The trigonometric and exponential forms

After finding rr and θ,\theta, we can rewrite our complex numbers in either trigonometric or exponential form.

Cartesian form z=x+yiPolar/trigonometric z=r(cosθ+isinθ)Exponential form z=reiθ\begin{gather*} \textbf{Cartesian form } \\ z = x+y\mathrm{i} \\ \textbf{Polar/trigonometric } \\ z = r(\cos \theta + \mathrm{i}\sin \theta) \\ \textbf{Exponential form } \\ z = r\mathrm{e}^{\mathrm{i}\theta} \end{gather*}

Examples

Re{\mathrm{Re}}
Im{\mathrm{Im}}
x{x}
y{y}
r{r}
θ{\theta}
α{\alpha}
z=1+3iz = - 1 + \sqrt{3} \mathrm{i}
z=r=x2+y2=(1)2+(3)2=2\begin{aligned} & |z| = r \\ &= \sqrt{x^2 + y^2} \\ &= \sqrt{(- 1)^2 + (\sqrt{3})^2} \\ &= 2 \end{aligned}
α=tan1yx=tan131=13π\begin{aligned} \alpha &= \tan^{-1}\left|\frac{y}{x}\right| \\ &= \tan^{-1} \frac{\sqrt{3}}{1} \\ &= \frac{1}{3} \pi \end{aligned}
arg(z)=θ=πα=23π\begin{aligned} & \arg (z) = \theta \\ & = \pi - \alpha \\ & = \frac{2}{3} \pi \end{aligned}
r=2,θ=23π\boxed{r=2, \theta = \frac{2}{3} \pi}
Polar/trigo form:z=r(cosθ+isinθ)z=2(cos23π+isin23π)\begin{aligned} & \textrm{Polar/trigo form:} \\ & z = r(\cos \theta + \mathrm{i} \sin \theta) \\ & \phantom{z } = 2 \left( \cos \frac{2}{3} \pi + \mathrm{i} \sin \frac{2}{3} \pi \right) \end{aligned}
Exponential form:z=reiθz=2e23πi\begin{aligned} & \textrm{Exponential form:} \\ & z = r\mathrm{e}^{\mathrm{i}\theta} \\ & \phantom{z } = 2 \mathrm{e}^{ \frac{2}{3} \pi \mathrm{i} } \end{aligned}

Conversion from polar form to cartesian form

The trigonometric form is the key to conversion back to cartesian form. Given z=reiθ=r(cosθ+isinθ),z = r\mathrm{e}^{\mathrm{i}\theta} \allowbreak {= r(\cos\theta + \mathrm{i}\sin\theta),} observe that rcosθr\cos\theta is the real part and rsinθr\sin\theta is the imaginary part. Evaluating those trigonometric expressions return us to the cartesian form.

Examples

z=2e16πi=2(cos16π+isin16π) \begin{aligned} z &= 2 \mathrm{e}^{ \frac{1}{6} \pi \mathrm{i} } \\ &= 2 \left( \cos \frac{1}{6} \pi + \mathrm{i} \sin \frac{1}{6} \pi \right) \end{aligned}
Next: Polar form arithmetic >>