Finding complex modulus 
∣ z ∣ = r = x 2 + y 2 {|z| = r =\sqrt{x^2+y^2}} ∣ z ∣ = r = x 2 + y 2   
Finding complex argument 
Let arg  z = θ \arg{z} = \theta arg  z = θ  . 
tan  θ = y x {\tan \theta = \frac{y}{x}} tan θ = x y   
Let α = tan  − 1 ∣ y x ∣ {\alpha = \tan^{-1} \left| \frac{y}{x} \right|} α = tan − 1 ∣ ∣  x y  ∣ ∣   
θ = { α if  x > 0 , y > 0 π − α if  x < 0 , y > 0 − ( π − α ) if  x < 0 , y < 0 − α if  x > 0 , y < 0 \theta = \begin{cases}
      \alpha           & \text{if } x > 0, y > 0 \\
      \pi - \alpha    & \text{if } x < 0, y > 0 \\
      -(\pi - \alpha) & \text{if } x < 0, y < 0 \\
      -\alpha          & \text{if } x > 0, y < 0
  \end{cases} θ = ⎩ ⎨ ⎧  α π − α − ( π − α ) − α  if  x > 0 , y > 0 if  x < 0 , y > 0 if  x < 0 , y < 0 if  x > 0 , y < 0   
The trigonometric and exponential forms 
After finding r r r   and θ , \theta, θ ,   we can rewrite our complex
numbers in either trigonometric or exponential form.
Cartesian   form   z = x + y i Polar/trigonometric   z = r ( cos  θ + i sin  θ ) Exponential   form   z = r e i θ \begin{gather*}
    \textbf{Cartesian form } \\
      z = x+y\mathrm{i} \\
    \textbf{Polar/trigonometric } \\
      z = r(\cos \theta + \mathrm{i}\sin \theta) \\
    \textbf{Exponential form } \\
      z = r\mathrm{e}^{\mathrm{i}\theta}
  \end{gather*} Cartesian form  z = x + y i Polar/trigonometric  z = r ( cos θ + i sin θ ) Exponential form  z = r e i θ   
Examples 
Q1  
				Q2  
				Q3  
				Q4 
			Real  
				Purely Imaginary 
 
			Random  
	  
			 
			 
				z = − 1 + 3 i z = - 1 + \sqrt{3} \mathrm{i} z = − 1 + 3  i  
			∣ z ∣ = r = x 2 + y 2 = ( − 1 ) 2 + ( 3 ) 2 = 2 \begin{aligned}
			& |z| = r  \\ 
				&= \sqrt{x^2 + y^2} \\
				&= \sqrt{(- 1)^2 + (\sqrt{3})^2} \\
				&= 2
		\end{aligned}  ∣ z ∣ = r = x 2 + y 2  = ( − 1 ) 2 + ( 3  ) 2  = 2   
			α = tan  − 1 ∣ y x ∣ = tan  − 1 3 1 = 1 3 π \begin{aligned}
			\alpha &= \tan^{-1}\left|\frac{y}{x}\right| \\
				&= \tan^{-1} \frac{\sqrt{3}}{1} \\
				&= \frac{1}{3} \pi
		\end{aligned} α  = tan − 1 ∣ ∣  x y  ∣ ∣  = tan − 1 1 3   = 3 1  π   
			arg  ( z ) = θ = π − α = 2 3 π \begin{aligned}
				& \arg (z) = \theta \\
				& = \pi - \alpha \\
				& = \frac{2}{3} \pi
			\end{aligned}  arg  ( z ) = θ = π − α = 3 2  π   
			r = 2 , θ = 2 3 π \boxed{r=2, \theta = \frac{2}{3} \pi} r = 2 , θ = 3 2  π   
			Polar/trigo form: z = r ( cos  θ + i sin  θ ) z = 2 ( cos  2 3 π + i sin  2 3 π ) \begin{aligned}
			& \textrm{Polar/trigo form:} \\
			& z = r(\cos \theta + \mathrm{i} \sin \theta) \\
			& \phantom{z } = 2 \left( \cos \frac{2}{3} \pi + \mathrm{i} \sin \frac{2}{3} \pi \right)
		\end{aligned}  Polar/trigo form: z = r ( cos θ + i sin θ ) z = 2 ( cos 3 2  π + i sin 3 2  π )   
			Exponential form: z = r e i θ z = 2 e 2 3 π i \begin{aligned}
			& \textrm{Exponential form:} \\
			& z = r\mathrm{e}^{\mathrm{i}\theta} \\
			& \phantom{z } = 2 \mathrm{e}^{ \frac{2}{3} \pi \mathrm{i} }
		\end{aligned}  Exponential form: z = r e i θ z = 2 e 3 2  π i   
Conversion from polar form to cartesian form 
The trigonometric form is the key to conversion back to cartesian form. Given
z = r e i θ = r ( cos  θ + i sin  θ ) , z = r\mathrm{e}^{\mathrm{i}\theta} \allowbreak {= r(\cos\theta + \mathrm{i}\sin\theta),} z = r e i θ = r ( cos θ + i sin θ ) ,  
observe that r cos  θ r\cos\theta r cos θ   is the real part and r sin  θ r\sin\theta r sin θ   is the imaginary
part. Evaluating those trigonometric expressions return us to the cartesian form.
Examples 
Convert 2 e 1 6 π i {\displaystyle 2 \mathrm{e}^{ \frac{1}{6} \pi \mathrm{i} }} 2 e 6 1  π i   to cartesian form x + y i {x+y\mathrm{i}} x + y i  
	
	z = 2 e 1 6 π i = 2 ( cos  1 6 π + i sin  1 6 π ) 
			\begin{aligned}
				z &= 2 \mathrm{e}^{ \frac{1}{6} \pi \mathrm{i} } \\
					&= 2 \left( \cos \frac{1}{6} \pi + \mathrm{i} \sin \frac{1}{6} \pi \right)
			\end{aligned}
		 z  = 2 e 6 1  π i = 2 ( cos 6 1  π + i sin 6 1  π )