Math Interactive
2. Functions
2.2. Inverse functions
2.2.4. Relationship
Important
The graphs of
f
f
f
and
f
−
1
f^{-1}
f
−
1
are symmetrical about the line
y
=
x
.
y=x.
y
=
x
.
Examples
x
{x}
x
y
{y}
y
(
−
3
,
8
)
{\left(-3 , 8 \right)}
(
−
3
,
8
)
(
−
1
,
2
)
{\left(-1 , 2 \right)}
(
−
1
,
2
)
(
8
,
−
3
)
{\left(8 , -3 \right)}
(
8
,
−
3
)
(
2
,
−
1
)
{\left(2 , -1 \right)}
(
2
,
−
1
)
y
=
f
(
x
)
{y=f(x)}
y
=
f
(
x
)
y
=
f
−
1
(
x
)
{y=f^{-1}(x)}
y
=
f
−
1
(
x
)
y
=
x
{y=x}
y
=
x
Get new example
f
:
x
↦
−
3
x
−
1
for
x
∈
R
,
−
3
<
x
<
−
1.
{f: x \mapsto - 3 x - 1} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, -3 < x < -1.}
f
:
x
↦
−
3
x
−
1
for
x
∈
R
,
−
3
<
x
<
−
1.
f
−
1
:
x
↦
−
1
3
x
−
1
3
for
x
∈
R
,
2
<
x
<
8.
{f^{-1}: x \mapsto - \frac{1}{3} x - \frac{1}{3}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, 2<x<8 .}
f
−
1
:
x
↦
−
3
1
x
−
3
1
for
x
∈
R
,
2
<
x
<
8.
Next: Composite functions >>