Math Interactive
2. Functions
2.2. Inverse functions
2.2.4. Relationship
Important
The graphs of
f
f
f
and
f
−
1
f^{-1}
f
−
1
are symmetrical about the line
y
=
x
.
y=x.
y
=
x
.
Examples
x
{x}
x
y
{y}
y
(
2
,
6
)
{\left(2 , 6 \right)}
(
2
,
6
)
(
6
,
2
)
{\left(6 , 2 \right)}
(
6
,
2
)
y
=
f
(
x
)
{y=f(x)}
y
=
f
(
x
)
y
=
f
−
1
(
x
)
{y=f^{-1}(x)}
y
=
f
−
1
(
x
)
y
=
x
{y=x}
y
=
x
Get new example
f
:
x
↦
7
x
−
8
for
x
∈
R
,
x
<
2.
{f: x \mapsto 7 x - 8} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, x < 2.}
f
:
x
↦
7
x
−
8
for
x
∈
R
,
x
<
2.
f
−
1
:
x
↦
1
7
x
+
8
7
for
x
∈
R
,
x
<
6.
{f^{-1}: x \mapsto \frac{1}{7} x + \frac{8}{7}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, x < 6.}
f
−
1
:
x
↦
7
1
x
+
7
8
for
x
∈
R
,
x
<
6.
Next: Composite functions >>