The graphs of ff and f1f^{-1} are symmetrical about the line y=x.y=x.

Examples

x{x}
y{y}
(0,4){\left(0 , 4 \right)}
(2,6){\left(2 , -6 \right)}
(4,0){\left(4 , 0 \right)}
(6,2){\left(-6 , 2 \right)}
y=f(x){y=f(x)}
y=f1(x){y=f^{-1}(x)}
y=x{y=x}
f:x5x+4for xR,0<x2.{f: x \mapsto - 5 x + 4} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, 0 < x \leq 2.}
f1:x15x+45for xR,6x<4.{f^{-1}: x \mapsto - \frac{1}{5} x + \frac{4}{5}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, -6\leq x<4 .}
Next: Composite functions >>