Math Interactive
2. Functions
2.2. Inverse functions
2.2.4. Relationship
Important
The graphs of
f
f
f
and
f
−
1
f^{-1}
f
−
1
are symmetrical about the line
y
=
x
.
y=x.
y
=
x
.
Examples
x
{x}
x
y
{y}
y
(
0
,
3
)
{\left(0 , 3 \right)}
(
0
,
3
)
(
1
,
−
6
)
{\left(1 , -6 \right)}
(
1
,
−
6
)
(
3
,
0
)
{\left(3 , 0 \right)}
(
3
,
0
)
(
−
6
,
1
)
{\left(-6 , 1 \right)}
(
−
6
,
1
)
y
=
f
(
x
)
{y=f(x)}
y
=
f
(
x
)
y
=
f
−
1
(
x
)
{y=f^{-1}(x)}
y
=
f
−
1
(
x
)
y
=
x
{y=x}
y
=
x
Get new example
f
:
x
↦
−
9
x
+
3
for
x
∈
R
,
0
≤
x
<
1.
{f: x \mapsto - 9 x + 3} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, 0 \leq x < 1.}
f
:
x
↦
−
9
x
+
3
for
x
∈
R
,
0
≤
x
<
1.
f
−
1
:
x
↦
−
1
9
x
+
1
3
for
x
∈
R
,
−
6
<
x
≤
3.
{f^{-1}: x \mapsto - \frac{1}{9} x + \frac{1}{3}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, -6<x\leq 3 .}
f
−
1
:
x
↦
−
9
1
x
+
3
1
for
x
∈
R
,
−
6
<
x
≤
3.
Next: Composite functions >>