Math Interactive
2. Functions
2.2. Inverse functions
2.2.4. Relationship
Important
The graphs of
f
f
f
and
f
−
1
f^{-1}
f
−
1
are symmetrical about the line
y
=
x
.
y=x.
y
=
x
.
Examples
x
{x}
x
y
{y}
y
(
0
,
4
)
{\left(0 , 4 \right)}
(
0
,
4
)
(
2
,
−
6
)
{\left(2 , -6 \right)}
(
2
,
−
6
)
(
4
,
0
)
{\left(4 , 0 \right)}
(
4
,
0
)
(
−
6
,
2
)
{\left(-6 , 2 \right)}
(
−
6
,
2
)
y
=
f
(
x
)
{y=f(x)}
y
=
f
(
x
)
y
=
f
−
1
(
x
)
{y=f^{-1}(x)}
y
=
f
−
1
(
x
)
y
=
x
{y=x}
y
=
x
Get new example
f
:
x
↦
−
5
x
+
4
for
x
∈
R
,
0
<
x
≤
2.
{f: x \mapsto - 5 x + 4} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, 0 < x \leq 2.}
f
:
x
↦
−
5
x
+
4
for
x
∈
R
,
0
<
x
≤
2.
f
−
1
:
x
↦
−
1
5
x
+
4
5
for
x
∈
R
,
−
6
≤
x
<
4.
{f^{-1}: x \mapsto - \frac{1}{5} x + \frac{4}{5}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, -6\leq x<4 .}
f
−
1
:
x
↦
−
5
1
x
+
5
4
for
x
∈
R
,
−
6
≤
x
<
4.
Next: Composite functions >>