A composite function is a function obtained by applying functions one after another.

Example

Consider the functions ff and gg defined by

f:xx+1,for xR,g:xx2,for xR.\begin{align*} &f: x \mapsto x+1, \quad &&\textrm{for } x \in \mathbb{R}, \\ &g: x \mapsto x^2, \quad &&\textrm{for } x \in \mathbb{R}. \end{align*}

Then we have fg(3)=f(32)=9+1=10fg(3)=f(3^2)=9+1=10.

The composite function fgfg represents the function obtained by first applying gg followed by ff.

On the other hand gf(3)=g(3+1)=42=16gf(3)=g(3+1)=4^2=16 so the composite function gfgf represents first applying ff followed by gg.

Visualization

f:xx+1,for xR,g:xx2,for xR.\begin{align*} &f: x \mapsto x+1, \quad &&\textrm{for } x \in \mathbb{R}, \\ &g: x \mapsto x^2, \quad &&\textrm{for } x \in \mathbb{R}. \end{align*}
10{10}
9{9}
3{3}
g{g}
f{f}
fg{fg}
16{16}
4{4}
3{3}
f{f}
g{g}
gf{gf}
Next: Existence >>