To solve more complicated equations, we may need to rely on comparing real and imaginary parts

Equality of complex numbers

Two complex numbers a+bia+b\mathrm{i} and x+yi,x+y\mathrm{i}, where a,b,x,yR,a,b,x,y \in \mathbb{R}, are considered equal if and only if both their real parts and imaginary parts are equal.

If a+bi=x+yi,a+b\mathrm{i} = x+y\mathrm{i}, where a,b,x,yR,a,b,x,y \in \mathbb{R}, then a=xa=x and b=y.b=y.

Remark: Note that a,b,x,ya,b,x,y above are real. If we have u+vi=w+zi,u+v\mathrm{i} = w + z\mathrm{i}, where u,v,wu,v,w and zz are complex, then the above result does not hold. Do you know why?

Examples

Example 1: square root of a complex number

Let z=x+yi,{z=x+y\mathrm{i},} where x{x} and y{y} are real.

(x+yi)2=34ix2y2+2xyi=34i \begin{aligned} (x+y\mathrm{i})^2 &= - 3 - 4 \mathrm{i} \\ x^2 - y^2 + 2xy \mathrm{i} &= - 3 - 4 \mathrm{i} \end{aligned}
Step 1: Let z=x+yi{z=x+y\mathrm{i}}

Example 2: complex equation with conjugates

Let z=x+yi,{z=x+y\mathrm{i},} where x{x} and y{y} are real.

2x+yi+(x+yi)(xyi)=3+4i2x+x2+y22yi=3+4i \begin{aligned} - 2 x + y \mathrm{i} + (x+y\mathrm{i})(x-y\mathrm{i}) &= 3 + 4 \mathrm{i} \\ - 2 x + x^2 + y^2 - 2 y\mathrm{i} &= 3 + 4 \mathrm{i} \\ \end{aligned}
Step 1: Let z=x+yi{z=x+y\mathrm{i}}
Next: Conjugate root theorem >>