The range is the set of all possible outputs (”yy“-values) of a function.

We denote the range of a function ff by RfR_f.

Graphs are especially useful to determine the range of a function.
End points, turning points and asymptotes are important in determining the range.

Examples

Use the following to generate functions and observe how their range can be determined from the graph.

0
x{x}
y{y}
32{- \frac{3}{2}}
9{- 9}
f:x6x9for xR.{f: x \mapsto - 6 x - 9} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}.}
Df=(,).Rf=(,).\textstyle \begin{aligned} D_f &= \left(-\infty, \infty\right). \\ R_f &= \left(-\infty, \infty\right). \end{aligned}
Next: Inverse functions >>