The range is the set of all possible outputs (”yy“-values) of a function.

We denote the range of a function ff by RfR_f.

Graphs are especially useful to determine the range of a function.
End points, turning points and asymptotes are important in determining the range.

Examples

Use the following to generate functions and observe how their range can be determined from the graph.

0
x{x}
y{y}
x=3{x=-3}
y=2{y=2}
f:x22x+3for xR,x3.{f: x \mapsto 2 - \frac{2}{x + 3}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, x \neq -3.}
Df=(,3)(3,).Rf=(,2)(2,).\begin{aligned} D_f &= \left(-\infty, -3 \right) \cup \left(-3, \infty\right). \\ R_f &= \left(-\infty, 2\right) \cup \left(2, \infty\right). \end{aligned}
Next: Inverse functions >>