The range is the set of all possible outputs (”yy“-values) of a function.

We denote the range of a function ff by RfR_f.

Graphs are especially useful to determine the range of a function.
End points, turning points and asymptotes are important in determining the range.

Examples

Use the following to generate functions and observe how their range can be determined from the graph.

0
x{x}
y{y}
x=1{x=1}
y=3{y=3}
f:x33x1for xR,x1.{f: x \mapsto 3 - \frac{3}{x - 1}} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, x \neq 1.}
Df=(,1)(1,).Rf=(,3)(3,).\begin{aligned} D_f &= \left(-\infty, 1 \right) \cup \left(1, \infty\right). \\ R_f &= \left(-\infty, 3\right) \cup \left(3, \infty\right). \end{aligned}
Next: Inverse functions >>