The range is the set of all possible outputs (”yy“-values) of a function.

We denote the range of a function ff by RfR_f.

Graphs are especially useful to determine the range of a function.
End points, turning points and asymptotes are important in determining the range.

Examples

Use the following to generate functions and observe how their range can be determined from the graph.

0
x{x}
y{y}
52{- \frac{5}{2}}
5{- 5}
(3,1){\left(-3 , 1 \right)}
f:x2x5for xR,x3.{f: x \mapsto - 2 x - 5} \allowbreak \quad \allowbreak {\textrm{for } x \in \mathbb{R}, x \geq -3.}
Df=[3,).Rf=(,1].\textstyle \begin{aligned} D_f &= \left[-3, \infty\right). \\ R_f &= \left( - \infty, 1 \right ]. \end{aligned}
Next: Inverse functions >>